Hydrodynamics of spacetime and vacuum viscosity
نویسنده
چکیده
It has recently been shown that the Einstein equation can be derived by demanding a non-equilibrium entropy balance law dS = δQ/T+ diS hold for all local acceleration horizons through each point in spacetime. The entropy change dS is proportional to the change in horizon area while δQ and T are the energy flux across the horizon and Unruh temperature seen by an accelerating observer just inside the horizon. The internal entropy production term diS is proportional to the squared shear of the horizon and the ratio of the proportionality constant to the area entropy density must be ~/4π. Here we will show that this derivation can be reformulated in the language of hydrodynamics. We postulate that the vacuum thermal state in the Rindler wedge of spacetime obeys the holographic principle. Hydrodynamic perturbations of this state exist and are manifested in the dynamics of a stretched horizon fluid at the horizon boundary. Using the equations of hydrodynamics we derive the entropy balance law and show the Einstein equation is a consequence of vacuum hydrodynamics. This result implies that ~/4π is the shear viscosity to entropy density ratio of the local vacuum thermal state. The value ~/4π has attracted much attention as the shear viscosity to entropy density ratio for all gauge theories with an Einstein gravity dual. It has also been conjectured as the universal lower bound on the ratio. We argue that our picture of the vacuum thermal state is consistent with the physics of the gauge/gravity dualities and then consider possible applications to open questions. E-mail: [email protected]
منابع مشابه
رد تانسور انرژی- تکانه و پسزنی گرانشی اسکالرهای شوینگر در فضازمان دوسیته سهبعدی
In this paper, we consider a massive charged scalar field coupled to a uniform electric field background in a 3 dimensional de Sitter spacetime. We consider the value of the dimensionless coupling constant of the scalar field to the scalar curvature of a 3 dimensional de Sitter spacetime equal to 1/8. We compute the expectation value of the trace of the energy-momentum tensor in the in-vacuum s...
متن کاملVacuum residue upgrading by pyrolysis-catalysis procedure over mesoporous ZSM-5 zeolite
A systematic study of two-staged upgrading process of vacuum residue for light fuel production has been carried out in a semi-batch binary reactor apparatus over Y, ZSM-5 and alkaline treated ZSM-5 zeolites. Prepared catalyst samples were characterized with XRD and BET. Density and Viscosity physical properties parameters estimation, as well as GC/SIMDIS analyses were conducted on liquid produc...
متن کاملRay-tracing and Interferometry in Schwarzschild Geometry
Here, we investigate the possible optical anisotropy of vacuum due to gravitational field. In doing this, we provide sufficient evidence from direct coordinate integration of the null-geodesic equations obtained from the Lagrangian method, as well as ray-tracing equations obtained from the Plebanski’s equivalent medium theory. All calculations are done for the Schwarzschild geometry, which resu...
متن کاملThree Dimensional Numerical General Relativistic Hydrodynamics I: Formulations, Methods, and Code Tests
This is the first in a series of papers on the construction and validation of a threedimensional code for general relativistic hydrodynamics, and its application to general relativistic astrophysics. This paper studies the consistency and convergence of our general relativistic hydrodynamic treatment and its coupling to the spacetime evolutions described by the full set of Einstein equations wi...
متن کاملInvestigation of Parameters Effect Resin Movement Velocity at Vacuum Assisted Resin Transfer Molding Method (VARTM)
In this paper, Vacuum Assisted Resin Transfer Molding (VARTM) method was simulated by analytical solution. Then the effect of parameters like fiber density, distribution of layer thickness, perform layer thickness, resin viscosity was investigated theoretically. Obtained results show that by selecting optimum distribution layer thickness, increasing fiber volume fraction, reducing viscosity of ...
متن کامل